Smart hydrogel degrades when new bone grows Bioengineers have created a hydrogel to help people regrow lost bone and tissue. The material is liquid at room temperature but turns semisolid when it injected into a patient. It built to degrade as bone and tissue seeded from the patient cells grow to take it place. Long-term stability A problem with thermogelling polymers is that once they harden, they begin to collapse and then force out water, says Brendan Watson, a graduate student at Rice University who helped create the hydrogel. That process, known as syneresis, defeats the purpose of defining the space doctors hope to fill with new tissue. If the transition gellation temperature is one or two degrees below body temperature, these polymers slowly start to expel water and shrink down until theyre one-half or one-third the size. Then the defect-filling goal is no longer accomplished, he says. Watson and colleagues solved the problem by adding chemical cross-linkers to the gel molecules. It a secondary mechanism that, after the initial thermogellation, begins to stabilize the gel, he says. The links begin to form at the same time as the gel, but crosslinking takes up to a half-hour to complete. The hydrogel is designed for stability over its long-term use as a scaffold for cells to take root and proliferate. But it also designed for its own timely destruction. The new material is described in a paper published in the journal Biomacromolecules. Semi-smart material I came up with the idea a few years ago, but it finally all come together, says Watson, who is pursuing both a Rice doctorate and a medical degree in a joint program with nearby Baylor College of Medicine. These chemical crosslinks are attached by phosphate ester bonds, which can be degraded by catalystsin particular, alkaline phosphatasethat are naturally produced by bone tissue. The catalysts are naturally present in your body at all times, in low levels. But in areas of newly formed bone, they actually get to much higher levels, he says. So what we get is a semi-smart material for bone-tissue engineering. As new bone is formed, the gel should degrade more quickly in that area to allow even more space for bone to form. Watson expects that the material degradation can be tuned to match various bone growth rates. Optimizing the degradation kinetics is nontrivial and may be better suited for a biotech company, he says. We focus more on the performance of the hydrogels and the underlying molecular mechanisms The National Institutes of Health, the Keck Center Nanobiology Training Program of the Gulf Coast Consortia and the Baylor College of Medicine Medical Scientist Training Program supported the research. Source: Rice University